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ARTICLE INFO ABSTRACT

Background: The unparalleled performance of deep learning approaches in generic image processing has mo-
tivated its extension to neuroimaging data. These approaches learn abstract neuroanatomical and functional
brain alterations that could enable exceptional performance in classification of brain disorders, predicting dis-
ease progression, and localizing brain abnormalities.

New Method: This work investigates the suitability of a modified form of deep residual neural networks (ResNet)
for studying neuroimaging data in the specific application of predicting progression from mild cognitive im-
pairment (MCI) to Alzheimer’s disease (AD). Prediction was conducted first by training the deep models using
MCI individuals only, followed by a domain transfer learning version that additionally trained on AD and
controls. We also demonstrate a network occlusion based method to localize abnormalities.

Results: The implemented framework captured non-linear features that successfully predicted AD progression
and also conformed to the spectrum of various clinical scores. In a repeated cross-validated setup, the learnt
predictive models showed highly similar peak activations that corresponded to previous AD reports.
Comparison with existing methods: The implemented architecture achieved a significant performance improve-
ment over the classical support vector machine and the stacked autoencoder frameworks (p < 0.005), nu-
merically better than state-of-the-art performance using sMRI data alone (> 7% than the second-best performing
method) and within 1% of the state-of-the-art performance considering learning using multiple neuroimaging
modalities as well.

Conclusions: The explored frameworks reflected the high potential of deep learning architectures in learning
subtle predictive features and utility in critical applications such as predicting and understanding disease pro-
gression.
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1. Introduction stages are, at best, only modestly effective in alleviating cognitive and

behavioral symptoms of the disease. As such, early therapeutic inter-

Dementia is vastly underdiagnosed in most health systems mainly
due to lack of educational/awareness programs and accessibility to
dementia diagnostic, treatment and care services (Bradford et al., 2009;
Connolly et al., 2011; Wilkins et al., 2007). Diagnosis typically occurs at
relatively late stages, following which the prognosis is poor in most
cases since even state of the art (FDA-approved) medications in these

ventions can not only help improve the cognitive and behavioral
function of the elderly patients, but also empower them to take im-
portant decisions about their health care while they can, and sig-
nificantly improve their overall quality of life.

The most widely reported form of dementia in the elderly popula-
tion is Alzheimer’s disease (AD) that features progressive, irreversible
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deterioration in memory, cognition and behavioral function. Mild
cognitive impairment (MCI) has been identified as an intermediate
condition between typical age-related cognitive decline and dementia
(Markesbery, 2010). This condition often leads to some form of de-
mentia (not necessarily AD) and hence is commonly referred to as the
prodromal stage of the disease. However, in the absence of an exact (i.e.
narrower) prodrome for AD, this broader population of MCI is currently
an attractive target for testing preventive treatments of AD. As men-
tioned before, the presently approved preventive medications are ef-
fective only over a limited (early) period (Casey et al., 2010). As such,
the modest effectiveness and extremely high costs of these drugs have
been a matter of constant debate especially in terms of cost to benefit
balance. Hence patients showing MCI symptoms must ideally be diag-
nosed at early stages and be followed up regularly to identify potential
risks of progression to AD (or other types of dementia). Several studies
are currently focused in this direction with a remarkable increase in the
collection and processing of multimodal neuroimaging, genetic, and
clinical data. As a straightforward example, there are as many as thirty-
four different live datasets that can be accessed from the Global Alz-
heimer’s Association Interactive Network (GAAIN) funded by the Alz-
heimer’s Association (GAAIN Data, 2017). Today, out of these splendid
data collection efforts, it is primarily the longitudinal studies that act as
a bridge between clinical and neuropathological models (Markesbery,
2010).

The structural magnetic resonance imaging (sMRI) neuroimaging
modality enables tracing of brain damage (atrophy, tumors and lesions)
and assists in ruling out any possible causes of dementia other than AD.
This modality has additional advantages for its non-invasive nature,
high spatial resolution, and ease of availability. Over the last two
decades, several studies have contributed to the identification of po-
tential AD biomarkers and prediction of progression to AD using sSMRI
data independently or in a multimodal pipeline (Arbabshirani et al.,
2017; Falahati et al., 2014; Rathore et al., 2017; Weiner et al., 2017). At
the same time, the neuroimaging community has increasingly wit-
nessed successful application of standard (i.e. classical) and advanced
(i.e. deep or hierarchical) machine learning (ML) approaches to extract
discriminative and diagnostic information from the high dimensional
neuroimaging data (Litjens et al., 2017; Plis et al., 2014; Shen et al.,
2017; Vieira et al., 2017). ML approaches are being increasingly pre-
ferred also because they allow for information extraction at the level of
the individual thus making them capable of assisting the investigator in
diagnostic and prognostic decision-making of the patients. The ML
methods could range from standard classification frameworks (for ex-
ample, logistic regression or support vector machines) that usually re-
quire manual feature engineering as a preliminary step to deep learning
architectures that automatically learn optimal data representations
through a series of non-linear transformations on the input data space.
The last few years have seen an emergence of deep structured or
hierarchical computational learning architectures to learn data re-
presentations that enable classification of brain disorders as well as
predicting cognitive decline. These architectures hierarchically learn
multiple levels of abstract data representations at the multiple cascaded
layers, making them more suitable to determine subtle differences in
the data. Some popular deep learning architectures including multi-
layer perceptron, autoencoders, deep belief nets, and convolutional
neural networks have indeed been applied for AD classification and
predicting progression of MCI patients to AD (Chen et al., 2015;
Falahati et al., 2014; Li et al., 2015; Liu et al., 2014, 2015; Suk et al.,
2015a,b; Suk and Shen, 2013a).

Convolutional neural networks (CNNs) are a class of feed-forward
artificial neural networks that have absolutely dominated the field of
computer vision over the last few years with the success of strikingly
superior image -classification models based on models including
AlexNet (Krizhevsky et al., 2012), ZF Net (Zeiler and Fergus, 2014),
VGG (Simonyan and Zisserman, 2015), GoogleNet (Szegedy et al.,
2015), and recently ResNet (He et al., 2016a). Deep CNN models
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typically stack combinations of convolutional, batch normalization,
pooling and rectifier linear (ReLU) operations as a mechanism to reduce
the number of connections/parameters in the model while retaining the
relevant invariants, and this entire network is typically followed by a
fully connected layer that supports inter-node reasoning. The deep re-
sidual neural network (ResNet) learning framework as proposed by He
et al., 2016a has a similar baseline architecture as the deep CNNs but
additionally features parameter-free identity mappings/shortcuts that
simplify gradient flow to lower layers during the training phase. Fur-
thermore, each block of layers learns not only from the activations of
the preceding block but also from the input to that preceding block. In
the original work (He et al., 2016a), these models have been shown to
enable ease and simplification of neural network architecture training,
thus allowing them to increase network depth and effectively enhance
the overall learning performance. These networks radically improve
optimization of the “residual” mappings as compared to the collective
and unreferenced original mappings (He et al., 2016a) as we will dis-
cuss next in more detail in the methods section.

Enhanced performance of the ResNet architecture within the
broader imaging community motivated us to explore its diagnostic and
prognostic suitability using neuroimaging data in this work. In a sys-
tematic approach, we first comprehensively evaluate the diagnostic and
prognostic performance of the ResNet architecture implemented in an
open-source Pytorch GPU framework (Pytorch Resnet Architecture,
2017) on a large dataset (n = 828; see Fig. 1 for detailed demographics)
featuring cognitively normal (CN), MCI and AD classes. Following this,
we focus on the prediction of progression to AD within the MCI class
(i.e. predicting which MCI subjects would progress to AD within three
years). In this specific analysis, we test the predictive performance of
our learning architecture and robustness of the features highlighted by
the predictive models, and after that focus on the human brain regions
maximally contributing to the prediction of MCI subjects progressing to
AD (as suggested by the implemented framework). Finally, we present a
qualitative analysis of these results discussing the degree of success (in
comparison to previously tested machine learning approaches), lim-
itations and future scope of the evaluated framework to study the dis-
eased brain.

2. Methods
2.1. Structural MRI data

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic re-
sonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org.

This study worked with all structural MRI scans available in the
ADNI 1/2/G0O/3 phases (as of November 6, 2017) that passed specific
class selection criterion and the image preprocessing pipeline quality
check. Healthy aging controls with no conversions in a minimum of 3
years of follow-up from their baseline scans were retained in the cog-
nitively normal (CN) class. Subjects diagnosed as MCI with no con-
versions/reversions in a minimum of three years of follow-up from their
baseline visit were grouped into the stable MCI (sMCI) class, while
those converting to AD (multiple conversions excluded) within three
years were grouped into the progressive MCI (pMCI) class. Subjects
diagnosed as AD at baseline and showing no reversions in a minimum of
2 years of follow-up were retained in the AD class. Only the baseline
scan for each subject was used in all analyses. Detailed scanning
parameters could be accessed from ADNI data resource webpage (ADNI
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Fig. 1. A comparison of data demographics and average clinical scores for the studied classes. This study included all subjects in the ADNI repository that passed the
minimum selection criterion (minimum follow-up time, conversion or reversion rules) and pre-processing qualitative analysis. Only the baseline scan for each subject
was used for all analyses in this study. Clinical scores for diagnosis: MMSE: Mini-Mental State Exam; FAQ: Functional Activities Questionnaire; CDRSB: Clinical
Dementia Rating Sum of Boxes; ADAS: Alzheimer’s Disease Assessment Scale; RAVLT: Rey Auditory Verbal Learning Test.

MRI Protocols). A total number of 830 subjects passed this criterion
with further elimination of only two subjects that failed the image
preprocessing pipeline quality analysis thus resulting in an overall
sample size of 828 subjects for this work. Fig. 1 shows the clinical and
demographic characteristics of these studied CN, sMCI, pMCI and AD
classes.

2.2. Structural data pre-processing

Image pre-processing was performed via the statistical parametric
mapping 12 (SPM12) toolbox. The structural MRI images were seg-
mented to identify the gray matter brain areas which were spatially
normalized to the 152 average T1 MNI template and finally smoothed
using a 3D Gaussian kernel to 6 mm full width at half maximum
(FWHM). The smoothed, modulated and warped 3D gray matter images
(with a voxel dimension of 160 X 195 x 170) were fed into the deep
learning model for diagnostic and prognostic classification. A quality
analysis correlation check was conducted with the population mean
image thresholded to eliminate outlier (poorly registered) scans. This
quality-check discarded only two subjects thus retaining 828 out of the
830 subjects that satisfied the selection criterion which we use for the
different diagnostic and prognostic classification tasks in this paper.

2.3. Feature and class scores extraction

A non-linear, deep residual neural network (ResNet) learning fra-
mework (He et al., 2016a) was used to extract a series of relatively
lower dimensional features from the very high dimensional smoothed

3D images. While traditional neural networks (NNs) learn to estimate a
layer’s or a small stack of layers’ output activation (y) as a function (f)
of the input image or activation (x) such that y = f(x), ResNets, on the
other hand, feature shortcut identity mappings of input space so as to
enable layers to learn incrementally, or in residual representations,
with the activations approximated as y = f(x) + I(x) = f(x) + x,
where I(*) is the identity function (He et al., 2016a, 2016b). The
shortcut connection approach in these networks is similar to that sug-
gested in the “highway networks” (Srivastava et al., 2015), but differs
in being parameter-free (i.e. shortcut connections are identity) as
compared to highway networks where shortcut connections are data
dependent and parameterized. It has been recently shown (Xie et al.,
2017) that the aggregated transformations in this framework allow for
substantially stronger representation powers in a homogenous, multi-
branched architecture that strikingly requires setting a very small
number of hyperparameters. We adapt this model to evaluate the ar-
chitecture’s performance in pair-wise (binary), mixed-class (domain
transfer learning-based binary) and multi-class (4-way) diagnostic
classifications as shown in Table 1. While we focus on the progression
of the MCI class to the AD class, all other binary classification tasks
were undertaken to confirm the appropriateness of learning trends (in
terms of classification performance and class separability) in the diag-
nostic classification of the several disease stages.

In this study, we use a modified form of an open-source Pytorch
implementation of this learning framework (Pytorch Resnet
Architecture, 2017 using Pytorch 1.0.0 and Python 3.6.1) evaluated for
different depths, and reducing the final fully-connected layer to class
probabilities to verify classification performance and appropriateness
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Table 1

Diagnostic/prognostic classification tasks evaluated through the deep ResNet
architecture. Standardized 10-repeat, 5-fold (stratified) cross-validation (CV)
framework was employed on each of the mentioned tasks except for the mixed-
class task (Task TB below) that varied in that the AD and CN classes were also
used for training but only the MCI population was used for testing.
Classification task TC corresponds to the multi-class classification task where a
four-way classification was performed using the same standardized cross-vali-
dation procedure.

Task Class 1 Class 2 Class 3 Class 4 5-fold stratified CV (10 repeats)
TA1 CN AD - - Standard Binary
TA2 CN pMCI - - Standard Binary
TA3  sMCI AD - - Standard Binary
TA4 sMCI pMCI - - Standard Binary
TA5 CN sMCI - - Standard Binary
TA6  pMCI AD - - Standard Binary
TB CN, sMCI pMCI, AD - - Modified Binary; Split MCI only
TC CN sMCI pMCI AD Standard 4-way

for the studied neuroimaging data. The 3D input data (smoothed gray
matter maps) are fed into the deep learning ResNet framework (Fig. 2)
which has a series of 3D convolutional units (CUs), 3D batch-normal-
ization units (BNUs) and non-linear activation units (Rectifier Linear
Units or ReLUs) followed by a max-pooling unit (MPU) from where
features are fed to the following residual blocks (RBs). Each RB has two
small stacks of layers, also termed building blocks (BBs), with each BB
having two CUs, two BNUs and 1 ReLU in the same specific order (CU-
BNU-ReLU-CU-BNU). Following the original recommendation (loffe
and Szegedy, 2015) BNUs were adopted following every CU and before
any activation functions. The activation at the output of the final re-
sidual block adder is fed into an average pooling (AP) unit for dimen-
sion reduction and subsequently flattened (from 3D to 1D) to feed a
fully connected (FC) layer featuring 512 output nodes. This relatively
lower dimensional flattened feature space at the output of the first FC
layer (FC1) is fed into a second FC layer (FC2) to estimate the diag-
nostic class probabilities/scores.

Training and testing routines were implemented on an NVIDIA
CUDA parallel computing platform (accessing three independent ser-
vers each with 4 GeForce GTX 1080 11 GB GPUs) using GPU-ac-
celerated CUDA toolkit/compilation and Pytorch python package
tensor libraries. The Adam stochastic optimization algorithm (Kingma
and Ba, 2015) was preferred for its computational efficiency, relatively
low memory requirements, and suitability for problems with large
data/parameters size. A batch size of 16, fixed learning rate parameter
of 0.001 and L2 weight decay parameter of 0.01 were chosen for the
final model selection, and all further classifier performance and feature
estimation routines. These settings were based on a preliminary ana-
lysis on the CN vs. AD classification task that suggested (1) insignificant
effect of batch-size on learner performance, and (2) the validated values
of learning rate and L2 weight decay parameter through a grid-search
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BB: Basic Block
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mmmmm Rectifier Linear Unit
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cross-validation analysis. Due to the GPU device memory constraints,
we tested only for batch sizes of 2, 4, 8 and 16 and since batch-size did
not noticeably affect performance, the maximum batch-size of 16 was
chosen to speed up computations (as compared to batch sizes 2, 4 and
8). Subsequently, ResNet’s performance for different model depths
(number of residual blocks) was compared to choose the appropriate
model depth for consistent comparison across several classification
tasks as demonstrated in Table 1.

2.4. Architecture depth selection, regularization and validation

The ResNet architecture with different depths (D = 1, 2, 3, 4; where
D is the number of residual blocks) was tested for diagnostic classifi-
cation performance for the CN vs. AD classification task. We retained
the architecture depth with the best performance as suggested in this
analysis (D = 3) for all other classification tasks for consistent com-
parison. Fig. 2 illustrates the modular structure of the selected frame-
work, whereas Fig. 3 shows a comparison of the model performances at
different depths. As shown in Fig. 2, following the MPU, this archi-
tecture featured three RBs followed by two FCUs; hence, in all, thirteen
convolutional and two fully connected layers were used in this fifteen-
layer model. Use of BNUs, default L2 weight decay (regularization) in
the Adam Optimizer, repeated stratified k-fold cross-validation for the
diagnostic and prognostic classification tasks and early stopping were
measures undertaken to prevent any overfitting and reduce classifica-
tion performance bias. This chosen architecture was then used to ex-
tract the features and class probability scores for the different binary/
mixed-class/multi-class classification tasks as discussed in the following
section.

2.5. Diagnostic/prognostic classification tasks

Classification performance for the different binary diagnostic and
prognostic classification tasks (CN vs. AD, CN vs. pMCI, sMCI vs. AD,
sMCI vs. pMCI, CN vs. sMCI, and pMCI vs. AD) for the four studied
groups was evaluated (Tasks TAl through TA6 in Table 1). Ad-
ditionally, mixed-class inter-MCI (Task TB: CN + sMCI vs. pMCI + AD;
training on all CN and AD data plus 80 % of sMCI and pMCI data;
testing on 20 % sMCI and pMCI data) and multi-class (Task TC: 4-way)
classification tasks were performed to enhance classification perfor-
mance and extract additional information than that conveyed by the
binary classifiers respectively. Notably, the mixed inter-MCI class
classification task was evaluated to explore any other benefits of do-
main transfer learning (Cheng et al., 2015), i.e. if training the classifier
with more data samples (i.e. all CN and AD datasets) resulted in an
improvement in the classification performance. While all other classi-
fication tasks were conducted to evaluate the framework performance
as compared to frameworks used in similar studies in the recent lit-
erature, only the mixed/modified inter-MCI classification task was fo-
cused on to seek evidence of the most affected brain areas while

Increasing Depth (D) by Residual Blocks

Maps

S
>

Fig. 2. A deep residual neural network learning framework is composed of multiple residual blocks that are small stacks of convolutional and batch normalization
layers followed by non-linear activation functions such as rectified linear units. In this study, as suggested by the data (Fig. 3), we use a model with three residual

layers for evaluating diagnostic classification performance and progression to AD.
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Fig. 3. (A) Repeated (n = 10) stratified k-fold (k = 5) cross-validation was performed on the pooled cognitively normal (CN) and Alzheimer’s Disease (AD) classes to
study the effect of adding depth (i.e. adding further convolutional layers or residual blocks) in the implemented framework. Significant improvement in validation
accuracy was reported by a model that used 3 residual blocks (D3: depth = 3) as compared to a model that used 2 residual blocks (D2: depth = 2; p = 1.6996e-07)
and a model that used 1 residual block (D1: depth = 1; p = 4.5633e-13). Adding another residual block (i.e. depth = 4) did not result in a significant improvement in
performance; hence, we’ve settled on the D3 model and validated it in the several classification/prediction tasks for a consistent comparison. For this specific
analysis, all models were run for 100 epochs and used the same training and test datasets in each of the cross-validation folds for consistency in performance
comparison. (B) The feature spaces at output of the first fully connected layer in the three surrogate models (for a sample cross-validation fold at the epoch
demonstrated by the vertical black line in Fig. 3A) were projected onto a two-dimensional space demonstrate additional separation enabled by addition of residual
blocks in the ‘D3’ model as compared to the ‘D2’ and ‘D1’ models. The ‘Tr’ abbreviation corresponds to the training samples whereas ‘Te’ corresponds to the samples

used to test the learnt model.

progressing to AD. All classification tasks were conducted using re-
peated (n = 10), stratified 5-fold cross-validation procedures on 90 %
of the subjects to get an estimate of the cross-validated validation ac-
curacy and fold-specific models. The generated models were then tested
on the remaining 10 % of the subjects to get an estimate of the cross-
validated test accuracy. Classification performance metrics including
accuracy, sensitivity, specificity, and balanced accuracy were computed
and complemented by conducting the receiver operating characteristic
(ROC) curve analysis to estimate the area under the curve (AUC) per-
formance metric for the several undertaken classification tasks.

3. Results
3.1. Architecture depth selection

In a repeated (n = 10), stratified 5-fold cross-validation framework,
the CN and AD datasets were evaluated for 100 epochs. The stratified
cross-validation procedure was performed on the pooled CN and AD
classes to study the effect of adding depth to the implemented archi-
tecture (i.e. further convolutional layers or residual blocks). This ana-
lysis reported significant (p < 0.005) improvement in validation ac-
curacy by a model that used 3 residual blocks (D3: depth = 3) as
compared to a model that used 2 residual blocks (D2: depth = 2; p =
1.6996e-07) and a model that used 1 residual block (D1: depth = 1; p
= 4.5633e-13). Adding another residual block (i.e. depth = 4) did not
result in significant improvement in performance; hence, we’ve settled

on the D3 model and validated it in the several classification/prediction
tasks, as will be shown in the forthcoming sub-sections. In this analysis,
the models were run for 100 epochs for each depth and used the exact
same training and test datasets in each of the cross-validation folds for
consistency in performance comparison. A comparison of training error,
training loss and validation error for the different depths are shown in
Fig. 3A. Additionally, the 512-dimensional feature space at the output
of the first fully connected layer in the ResNet model was projected onto
a two-dimensional space using the t-distributed stochastic neighbor
embedding (tSNE) algorithm (der Maaten et al., 2008) to visualize class
separation differences with model order. We show projections from a
surrogate model (from a sample cross-validation fold) for a sample
epoch around which the D3 model clearly exhibits significant differ-
ences in validation accuracy (Fig. 3B). The projections from other
surrogate models (from other cross-validation folds) and other epochs
beyond the significant difference showing epoch could be expected to
exhibit a similar pattern because of evidence from results in Fig. 3A.

3.2. Binary diagnostic/prognostic classification

The performance of the validated (depth = 3) deep learning fra-
mework on pair-wise (binary) classification tasks was compared to
identify how well the pMCI and AD populations separated from the CN
and sMCI populations. These binary classification tasks were conducted
using repeated (n = 10), stratified 5-fold cross-validation procedures on
90 % of the samples. Model training was conducted with an early
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Fig. 4. Six possible binary diagnostic and prognostic classification tasks from the four studied classes were considered. A repeated (n = 10), stratified 5-fold cross-
validation procedure was conducted for each of these classification tasks. The ResNet framework was trained independently for each classification task for a
maximum of 100 epochs but with an early stopping with a patience level of 20 epochs (20 % of the set maximum number of epochs) to prevent overtraining the
validation models. (Top) The performance of the ResNet framework performed significantly better (p < 0.005) than the linear support vector machine (SVM) and
stacked auto-encoder (SAE) methods for all binary tasks. (Bottom) Each boxplot shows a spread of the specific reported metric (accuracy, sensitivity, specificity or
balanced accuracy) over the 50 cross-validation folds. The first four classification tasks in specific order as in the legend (CN vs. AD, CN vs. pMCI, sMCI vs. AD, and
SMCI vs. pMCI) could be considered more clinically relevant and reported a cross-validated mean validation accuracy of 91.0 %, 89.3 %, 88.1 % and 77.8 %
respectively, and mean test accuracy of 89.3 %, 86.5 %, 87.5 % and 75.1 % respectively.

stopping with a patience level of 20 epochs (20 % of the set maximum
number of epochs) to prevent overtraining the validation models. The
10 % held out samples were tested on each of the validated fold-specific
models. The mean test accuracy for the ResNet architecture for these
four classification tasks was found to be statistically significant
(p < 0.005) over a standard machine learning approach such as the
classical support vector machine (SVM) classifier and a standard deep
learning approach such as the stacked autoencoder (SAE) as shown in
the top panel of Fig. 4. The results in bottom panel of Fig. 4 reflect a
clear trend with the average cross-validation and test metrics for the
classification of CN or sMCI classes from pMCI or AD classes distinctly
higher than the average metrics for the CN vs. sMCI and pMCI vs. AD

classification tasks. Specifically, for the first four classification tasks
(CN vs. AD, CN vs. pMCI, sMCI vs. AD, and sMCI vs. pMCI), we report a
cross-validated mean validation accuracy of 91.0 %, 89.3 %, 88.1 %
and 77.8 % respectively and mean test accuracy of 89.3 %, 86.5 %, 87.5
% and 75.1 % respectively. The appropriate separability trend across
the different classes and genuinely high classification metrics as com-
pared to previous findings in the literature (reviewed recently in
(Moradi et al., 2015 and Vieira et al., 2017) in a large heterogeneous
sample highlight the suitability of the used deep learning model.

For further introspection into the diagnostic ability of the binary
classifiers, we estimated the classification-task-specific receiver oper-
ating characteristic (ROC) curves. A comparison of the area under the
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Fig. 5. Receiver operating characteristic (ROC) curves were estimated for each of the classification tasks to evaluate the diagnostic ability of the trained ResNet
framework further. As expected, the reported area under the curve (AUC) metric follows a similar trend as in Fig. 4 thus further adding evidence to the superior

performance of the tested architecture for the undertaken analysis.

ROC curve (AUC) metric confirmed a similar trend as suggested in the
previous analysis (Fig. 4) and as illustrated in Fig. 5. We report a cross-
validated test AUC of 0.94 for CN vs. AD, 0.90 for CN vs. pMCI, 0.90 for
sMCI vs. AD and 0.78 for the sMCI vs. pMCI classification tasks for these
tasks respectively. These initial results indicate high suitability of the
evaluated framework for our desired objective; further possible im-
provement in the prediction of progression to AD was explored with the
mixed-class prognostic classification analysis as discussed in the next
section.

3.3. Mixed-class prognostic classification

The sMCI vs. pMCI classification task could be considered as the
most clinically relevant task amongst the several binary classification
tasks since identifying MCI subjects who are highly likely to progress to
AD is very crucial. Hence, we focus on exploring ways to improve se-
parability between these two classes in this specific analysis. A recent
study (Cheng et al., 2015) explored the advantages of domain transfer
learning to enhance MCI conversion prediction rates, something similar
to what we pursue in the section. In general, training the machine
learner with more data is highly likely to improve its classification/
prediction performance on unseen data since the learning model as-
similates the additional variability provided by the previously unseen
datasets and adjusts its weights accordingly for more generalized
training (i.e. decrease in generalization error). In a scenario where
availability of MCI data is severely limited, we hypothesized that
training the learner with all data from the CN and AD classes (or do-
mains) together with some part of the two MCI subtypes (or domains),
and then testing with the remaining part of the MCI subtypes (or do-
mains) could enhance classification performance.

For this analysis, we conducted the above discussed modified form
of repeated (n = 10) stratified 5-fold cross-validation on 100 % of the
CN and AD class samples, and 90 % of the MCI samples (holding the
remaining 10 % as test samples). We report a significantly improved
cross-validated mean test accuracy of 83 %, a sensitivity of 76 %, a
specificity of 87 % respectively (Fig. 6A), and an AUC of 0.88

respectively (Fig. 6B). The results for this modified MCI subtype clas-
sification task reflect substantial improvement over the standard binary
version of this task (8% in accuracy, 4% in sensitivity, 9% in specificity
and 10 % in AUC) with the addition of domain transfer learning in the
training phase. Finally, the test performance of this modified inter-MCI
case was confirmed as a significant improvement (p < 0.005) over the
standard linear SVM and SAE methods applied on the same training/
testing cross-validation folds. In this specific analysis, for estimating the
performance of the SVM classifier, the classical univariate feature se-
lection procedure using F-test (ANOVA) was implemented for dimen-
sion reduction following which the optimal value of the penalty (cost)
parameter in the linear SVM was estimated. For the SAE method, we
considered three hidden layers and employed a grid search to select the
number of units in the intermediate layers based on the results in Suk
et al., 2015a,b. The boxplots for the accuracies for the different cross-
validation folds using the Resnet, SAE and SVM models are shown in
Fig. 6C. Finally, the cross-validation and test prediction accuracies for
the ResNet model on the smoothed gray matter maps are compared to
that on the non-smoothed data using the same folds of the stratified,
repeated (n = 5) k-fold (k = 5) cross-validation (Fig. 6D). The perfor-
mance on the smoothed data was observed to be significantly better
(p < 0.05) as compared to that evaluated on non-smoothed data. We
speculate this resultant improvement due to an increase in the signal to
noise ratio caused by smoothing. Notably, smoothing was implemented
at the subject level (and not the group level) to make sure the inter-
individual differences were preserved.

More recently, Basaia et al., 2019 demonstrated the usefulness and
practicality of the all convolutional neural networks (AllConvNets) in
discriminating the progressive MCI subjects from the stable MCI sub-
jects and reported a test accuracy of 75.1 %. This architecture were
originally designed to simply the network architecture and differ from
the standard CNNs in terms of using standard convolutional layers
(with varying alternate strides) instead of max-pooling layers. We de-
signed and tested the exact same architecture of the AllConvNet with 12
repeated blocks of convolutional layers (2 blocks with 50 kernels of size
5% 5 X 5 with alternating strides 1 and 2, and 10 blocks with
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Fig. 6. Mixed-Class Prognosis Classification. A modified form of repeated (n = 10), stratified 5-fold cross-validation procedure was conducted to evaluate the
separability of the two MCI sub-classes. Hypothesizing an improvement with an increase in amount of training data provided by other classes (analogous to domain
transfer learning), the learner was trained with all datasets from the CN and AD classes (or domains) in addition to the cross validation-fold-respective training sMCI/
PMCI datasets followed by testing on the cross validation-fold-respective testing sMCI/pMCI datasets. (A) and (B) A significant improvement for all studied clas-
sification metrics (6% in accuracy, 7% in sensitivity, 5% in specificity and 7% in AUC) was observed for this mixed-class classification task as compared to the
standard inter-MCI class classification task (i.e. sMCI vs. pMCI classification task as shown in Fig. 4 and bottom left panel in Fig. 5). (C) The mixed-class classification
task reported a significant performance improvement (p < 0.005) over the classical SVM and SAE methods. (D) The cross-validated validation and test accuracies
estimated from the smoothed gray matter maps showed significant improvement (p < 0.05) over the corresponding values estimated from the non-smoothed gray

matter maps.

100-1600 kernels of size 3 X 3 x 3 with alternating strides 1 and 2), a
Rectified Linear Unit (activation layer), a fully-connected layer, and one
output (logistic regression) layer. For this AllConvNet architecture, we
report a mean accuracy of 77.6 % for the modified inter-MCI classifi-
cation case on the exact same crossvalidation folds as used in our
central analysis (that reported 83.0 % for our method; p < 0.005).

3.4. Comparison with previous literature

In this section, we compare the prediction performance of AD pro-
gression in our study (modified inter-MCI task) to previous deep
learning work in recent literature (Table 2). Notably, while we directly
compare the SAE and SVM methods on the same cross-validation and
test folds, a comparison with the results reported from other methods in
the reported studies could likely induce a bias due to the indirect nature
of comparison (training and testing on different data folds and possibly
different conversion periods). Thus, we outstandingly clarify that this
section is intended to provide a rich literary review of the most relevant
works on AD progression, showcase an indirect comparison to relevant
previous works and highlight the potential of the used ResNet in neu-
roimaging applications such as understanding disease progression.
Hence, as such, this comparison doesn’t argue that ResNet architecture
is necessarily the most superior of all the frameworks featured in this

comparison; rather, our focus is on highlighting the suitability of this
architecture in identifying the most discriminative regions and other
factors in AD progression.

To identify previous studies that used deep learning on neuroima-
ging data to study psychiatric or neurological disorders, we searched
PubMed (May 25, 2018) using search terms very similar to a recent
review (Vieira et al., 2017). Specifically, the following search terms
were used: (“deep learning” OR “deep architecture” OR “artificial
neural network” OR “autoencoder” OR “convolutional neural network”
OR “deep belief network”) AND (neurology OR neurological OR psy-
chiatry OR psychiatric OR diagnosis OR prediction OR prognosis OR
outcome) AND (neuroimaging OR MRI OR “magnetic resonance ima-
ging” OR “fMRI” OR “functional magnetic resonance imaging” OR PET
OR “positron emission tomography”). Following this, we manually
screened these articles to identify the relevant subset of studies that
applied deep learning to study MCI to AD progression. A comparison of
prediction using MRI data only confirms the superior performance of
our method as compared to other undertaken approaches. Using just
MRI data, the prediction accuracy obtained in our study (83.01 %) is
numerically 7% greater than the second best performer (using MRI data
only) that used a multiscale deep NN in a very recent study (Lu et al.,
2018). Considering the use of multiple modalities, only Suk et al.,
2015a,b (83.3 % using MRI, PET and CSF modalities) and Lu et al.,
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Table 2
Comparison of MCI to AD prediction accuracy using ADNI dataset.

Journal of Neuroscience Methods 339 (2020) 108701

Study Sample Size  Conversion Period Architecture Cross-validation Accuracy (%)
This work CN = 237 36 months Residual Repeated (n = 10) 83.01 (MRI)
sMCI = 245 Neural Network Stratified 5-Fold
pMCI = 189
AD = 157
Suk et al., 2015a,b CN = 52 18 Months Stacked Auto-Encoder Repeated (n = 10) 10- 69.3 (MRI)
sMCI = 56 Fold 83.3 (MRI + PET + CSF)
pMCI = 43
AD =51
Suk et al., 2015a,b CN = 52 18 Months Deep sparse multi-task learning Repeated (n = 10) 10- 69.8 (MRI)
sMCI = 56 18 Months Deep sparse multi-task learning Fold 74.2 (MRI + PET)
pMCI = 43 Repeated (n = 10) 10-  73.9 (MRI)
AD =51 Fold
CN = 229
sMCI = 236
pMCI = 167
AD = 198
Li et al., 2015 CN = 52 18 Months Multi-layer perceptron Repeated (n = 10) 10- 57.4 (MRI + PET + CSF)
sMCI = 56 Fold
pMCI = 43
AD =51
Suk and Shen, 2013b CN = 52 18 Months Stacked Auto-Encoder + Multi-task learning Repeated (n = 10) 10- 55 (MRI)
sMCI = 56 Fold 75.8 (MRI + PET + CSF
pPMCI = 43 + SCORES)
AD =51
H.-I. Suk, Lee, Shen, & CN = 186 18 Months Multi-Output Linear Regression + Deep Convolution Repeated (n = 10) 10- 73.28 (MRI + SCORES)
Initiative, 2017 sMCI = 167 Neural Network (CNN) Fold 74.82 (MRI + SCORES)
pMCI = 226 Joint Linear and Logistic Regression + Deep CNN Repeated (n = 10) 10-
AD = 226 Fold
— Same —
Shi et al., 2018 CN = 52 18 Months Stacked Deep Polynomial Network Repeated (n = 5) 10- 78.88 (MRI + PET)
sMCI = 56 Fold
pMCI = 43
AD =51
Suk et al., 2014 CN =101 Unmentioned Deep Boltzmann Machine 10-Fold 72.42 (MRI)
sMCI = 128 75.92 (MRI + PET)
pMCI = 76
AD =93
Lu et al., 2018 CN = 360 0 to 36 Months Multiscale Deep Neural Network 10-Fold 75.44 (MRI)
sMCI = 409 82.93 (MRI + PET)
pMCI = 217
AD = 238

2018 (82.93 % using MRI and PET) report slightly higher performance
as compared to our study. Interestingly, despite using multiple mod-
alities, the methods used in these two studies report only marginal
improvements (0.6 % and 0.2 % respectively) over our unimodal ana-
lysis. Working with multiple modalities generally enhances the pre-
diction performance (variably from 3% to greater than 20 % in studies
included in Table 2), so it would be reasonable to expect further im-
provement in prediction performance through our method if compli-
mentary information from an additional modality is leveraged.

Furthermore, Moradi et al., 2015 (see Table 7 in their manuscript)
and Korolev et al., 2016 (see Table 3 in their manuscript) did extensive
comparisons of other (non-deep-learning) studies and showed their
respective approaches to result in better precision than other ap-
proaches in previous literature. Moradi et al., 2015 studied progression
with ADNI data (large sample of 825 subjects) using a regularized lo-
gistic regression approach to report classification accuracy of 74 %
using MRI biomarker only and 82 % using their aggregate biomarker
that used the patient age and clinical scores as features in addition to
the MRI biomarker. Korolev et al., 2016 worked with only ADNI-1 MCI
subjects (n = 259) to predict progression to AD from MCI using a
probabilistic, kernel-based pattern classification approach to report a
prediction accuracy of 79.9 % using MRI and clinical (cognitive and
functional) scores. Our method predicted more accurately (83.01 %)
using a large sample of 828 subjects (MRI data alone) than these two
multimodal, non-deep-learning studies and all studies reviewed in these
two studies.

3.5. Multi-class (4-way) diagnostic/prognostic classification

For the multi-class (4-way) case, the learning framework scored a
cross-validated median validation accuracy of 53.8 % and test accuracy
of 51.41 % that is higher than recent studies evaluating such a 4-way
classification (as reviewed in Table 2 in Vieira et al., 2017). However, it
must be noted that recent work using traditional pattern recognition
approaches has produced superior performances, thus making use of
deep learning approaches arguable for such complex classification
problems (Sarica et al., 2018). As there is ample evidence of the ex-
cellent performance of deeper models in complex, generic image pro-
cessing applications, we note that such a complex 4-way classification
problem clearly demands further introspection in the form of extensive
hyperparameter validation and choice of the optimization criterion.
Nonetheless, the reported accuracy levels are substantially higher than
chance (25 %). The appropriateness of the data trends learnt in this
much harder classification problem was further confirmed by in-depth
ROC and feature projection analyses as discussed next. As an extension
of binary ROC analysis, for each class, we estimated a single ROC curve
by comparing it to all other classes (i.e. one vs all comparison). ROC
curves for the multi-class case can also be assessed by micro-averaging
which measures true and false positive rates by considering each ele-
ment of each class as a binary prediction, or by macro-averaging which
essentially averages over the several class-specific classification metrics.
In this analysis, the AD and CN classes reported a higher AUC of 0.83
and 0.75 respectively, micro-averaged and macro-averaged cases an
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Fig. 7. Multi-class ROC and Classification Projection Analysis. (A) For the multi-class classification, ROC analysis for each class was performed by comparing
observations from that class to all other classes (i.e. one vs all comparison). Additionally, micro-averaged and macro-averaged ROC estimates were computed to find
singular performance metrics for multi-class classification. Higher AUC was reported by the AD and CN classes followed by the micro-averaged and macro-average
cases, while both MCI classes reported a lower AUC. (B) and (C) A feature projection analysis was conducted to confirm the appropriateness of the learning
directionality in the multi-class classification task. In this analysis, the features at the output of the first fully-connected layer in a sample surrogate multi-class model
were projected onto a two-dimensional space using the tSNE algorithm. Barring few outliers, the projections of the observations are appropriately ordered by disease
severity in terms of the diagnostic label (panel B) and clinical scores (panel C). In panel B, the ‘Tr’ abbreviation in the figure legend corresponds to the training
samples whereas ‘Te’ corresponds to the test samples. In panel C, the following clinical scores were used: - MMSE: Mini-Mental State Exam, FAQ: Functional Activities
Questionnaire, CDRSB: Clinical Dementia Rating Sum of Boxes, ADAS: Alzheimer’s Disease Assessment Scale, and RAVLT: Rey Auditory Verbal Learning Test.

AUC value of 0.75 and 0.74 respectively, whereas the pMCI and sMCI
classes showed lower AUC of 0.71 and 0.68 respectively (Fig. 7A).

In the multi-class feature projection analyses (Fig. 7B and C), the
512-dimensional features at the output of the first fully-connected layer
in the employed framework were projected onto a two-dimensional
space using the tSNE algorithm (der Maaten et al., 2008). The tSNE
algorithm embeds similar observations as nearby points and non-si-
milar observations as distant points with high probability; so more si-
milar classes could be expected to cluster near each other in the pro-
jection space. This projection analysis was performed to confirm the
learning directionality of validated models in our multi-class classifi-
cation case, expecting majority observations for more similar classes
being projected/clustered together. Fig. 7B demonstrates projections
from a sample surrogate model (i.e. model validated for a sample cross-
validation fold). Although the classes are not separable in the projection
space, yet a clear pattern can be traced easily across the projection
spectrum. More specifically, we can observe classes ordered in in-
creasing severity of disease from left to right (i.e. CN, sMCI, pMCI and
AD in this specific order) although some outlier observations do exist.
The disease severity or the class pattern is further confirmed by coloring
the same two-dimensional projections (as in Fig. 7B) with the six
clinical (cognitive and functional) scores (Fig. 7C). The MMSE and
RAVLT clinical scores reveal an apparent increase across the spectrum
(left through right), whereas the FAQ, CDRSB, ADAS11 and ADAS13
clinical scores (by nature of score characterization) reveal an apparent
decrease across the same spectrum.

Interestingly, this projection graph shows the presence of a clear bi-
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modal structure with most of the CN and sMCI individuals in the first
mode and the pMCI and AD individuals in the second mode. So, as a
supplementary validation analysis, we focused on the smoothed grey
matter maps of the subjects at tSNE extremes and the boundary of the
two modes in the tSNE projection. We performed the proposed study by
estimating three groups including the homogeneous healthy controls
and AD groups at the left and right far ends of the projection spectra
(far-CN and far-AD respectively), and a heterogeneous (fused) group in
the middle of the projection spectra. Significance testing using t-test
statistics was conducted pairwise on preprocessed grey matter maps of
these three groups using FDR corrected p-values for a significance level
of 0.05. This analysis validated the differences in the input maps for the
subjects at the extremes of the tSNE plots (Fig. 8). The brain voxels
showing significant differences are highlighted by the difference of
mean group activations in panels B1, B2 and B3 of this figure. While
these differences can be seen clearly for the comparison of the two
homogeneous groups in panel B1 of Fig. 8, the subjects close to the
boundaries separating the modes showed lower significant differences
as compared to both homogenous groups (panels B2 and B3 in Fig. 8).

3.6. Localizing abnormalities: discriminative brain regions

Peak activations of the identified brain regions which are most
discriminative of progression of MCI to AD were localized by estimating
occlusion sensitivity using the network occlusion approach (Zeiler and
Fergus, 2014). We pursued this probability-based approach to estimate
and quantify the relevance of the different brain regions in the
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Fig. 8. (A) Two-dimensional projections of the 512-dimensional features at the output of the fully connected layer in the ResNet model. Two homogenous groups
(far-CN and far-AD) and a heterogeneous group (fused) were sampled and evaluated for significant differences in the input (preprocessed gray matter) space. Voxels
showing significant differences post FDR correction (p < 0.05) are highlighted in panels B1, B2 and B3. While these differences can be seen clearly for the
comparison of the two homogeneous groups in panel B1, the subjects close to the boundaries separating the modes showed lower significant differences as compared

to both homogenous groups (panels B2 and B3).

classification decisions, although few other popular approaches (Nair
et al., 2018; Zintgraf et al., 2017) could be adapted too. In this ap-
proach, brain networks in correspondence with the automated anato-
mical labelling (AAL) brain atlas were occluded one at a time, class
probabilities re-evaluated, and the relevance of each brain region was
estimated proportional to the decrease in target class probabilities
when that specific region was occluded. The most discriminative brain
networks highlighted through this approach are illustrated in Fig. 9A.
Peak activations (i.e. highest relevance weights) were observed in the
hippocampus, parahippocampal gyrus, temporal superior, middle and
inferior gyrus, fusiform gyrus, occipital superior, middle and inferior
gyrus including calcarine and cuneus, lingual gyrus, frontal middle and
inferior gyrus regions, precuneus, and cerebellum 6, crux 1 and 2 re-
gions. Besides, the amygdala, putamen, thalamus, caudate and frontal
superior regions showed moderate relevance.

Furthermore, we quantify network relevance estimates by factoring
in the network areas (in addition to the assessed change in prob-
abilities). Fig. 9B shows the cross-validated percentage contribution of
each of the highly relevant networks to the prediction decision making.
The illustrated brain regions are the thirteen (out of a total number of
116 AAL brain regions) that consistently emerged in the top 20 most
relevant regions in all cross-validation folds. Specifically, highest re-
levance weights through this latter approach were observed in temporal
middle gyrus, cerebellum crusl, precuneus, lingual gyrus and calcarine

brain regions, followed by high relevance weights in the temporal in-
ferior gyrus, cerebellum 6, temporal superior gyrus, occipital middle
gyrus, frontal middle gyrus, cerebellum 2, fusiform gyrus and insula
regions as shown in Fig. 9B.

4. Discussion

In this work, we extensively test the ability of the ResNets to learn
abstract neuroanatomical alterations in structural MRI data. For each of
the binary as well as the mixed class (modified inter-MCI) classification
tasks, the ResNet architecture performed superior to the SVM and SAE
methods. The primary progression analysis of our work is the mixed-
class inter-MCI classification task where we used principles of domain
transfer learning (additionally training with data from other domains).
This analysis bears high clinical relevance. Importantly, on the MRI
data alone we achieved a test classification accuracy of 83.01 % which
is a significant improvement over state of the art with either MRI based
(75.44 % as reported in Lu et al., 2018) and very close to state of the art
performance with multimodal results (83.3 % as reported in Suk et al.,
2015a,b). The accuracy in this modified inter-MCI class classification
task is significantly higher than that in the standard inter-MCI case
which suggests the performance improvement was also enabled by
additional training information acquired from other (AD and CN) do-
mains. Notably, the reported performance metrics were obtained from a
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Fig. 9. (A) Sagittal, coronal and axial slices of whole brain relevance maps as highlighted by the network occlusion approach in correspondence to the AAL brain atlas
networks. (B) Quantitative (cross-validated) assessment of the relevance of the brain regions in classification/prediction decisions to study AD progression. This latter

assessment factored in the brain network areas for relevance estimation.

large dataset (n = 828), a rigorous cross-validation procedure featuring
ten repeats and a sufficiently large (20 %) validation size and test (10
%) size.

Furthermore, the learning directionality and trends were verified in
the multiclass case by projecting the features at the output of the first

12

fully-connected layer onto a two-dimensional surface. The projection/
clustering class sequence in Fig. 7B and C support the appropriateness
of the extracted features and their association with the clinical scores,
thus confirming the high learning capacity and potential of this deep
architecture. These results manifest that the ResNets can be considered
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well-suited to neuroimaging data and future studies to uncover the
further potential of such or similar architectures must be undertaken.
Next, we discuss the discriminative brain regions suggested by the
ResNet in context to previous findings in the literature.

4.1. Discriminative brain regions

AD is characterized by severe trouble in performing familiar tasks,
solving problems, planning, reasoning, judgement and thinking, and
generally features increased confusion and discomfort in speech, vision,
reading, focusing, and spatial or temporal perception. Struggling with
these symptoms, the person undergoes mood and personality changes
and increasingly loses interest in favorite activities and social life. A
sizable amount of previous work has related the above mentioned
cognitive, behavioral and emotional phenomenon to specific structural
changes in the brain, which we discuss next in context to the dis-
criminative brain regions identified by the ResNet framework.

The hippocampus and amygdala subcortical regions in the medial
temporal lobe have been consistently reported as most prominent dis-
criminative regions in early AD. Hippocampus is strongly related to
memory formation and recall, and recent evidence suggests more pro-
nounced hippocampal atrophy in the progressive MCI class (Braak and
Braak, 1991b; Burton et al., 2009; Costafreda et al., 2011; Devanand
et al., 2007; Kantarci et al., 2009; Risacher et al., 2009; Visser et al.,
2002; Walhovd et al., 2010). Similarly, structural changes in the
amygdala, a brain region mainly responsible for emotional experiences
and expressions, have been related to personality changes, for example,
increased irritability and anxiety, in AD (Poulin et al., 2011; Unger
et al., 1991; Whitwell et al., 2008). Other relatively highly activated
subcortical regions included para-hippocampal gyrus, thalamus and
putamen. While the primary function of the thalamus is to relay motor
and sensory signals to the cerebral cortex and regulate consciousness
and sleep, the dorsal striatum is believed to contribute directly to de-
cision-making subjective to desired goals. Observed aberrations in the
putamen and thalamus regions are typical of subjects with AD
(Aggleton et al., 2016; Braak and Braak, 1991a; Cho et al., 2014; Jiji
et al., 2013; De Jong et al., 2008). Impairments in the thalamus in AD
have been associated with deteriorating consciousness, bodily move-
ment and coordination, attentional, and motivation levels and impair-
ments in the dorsal striatum related to very slow or absent decision-
making abilities.

Apart from the above widely studied and highly discriminative
medial temporal lobe, we also report peak activations in the inferior
and superior temporal gyruses and the fusiform gyrus. These regions
have been known to be associated with pattern (e.g. face, body, object,
word, color, etc.) recognition and reported to be affected by AD in a few
previous studies (Chan et al., 2001; Galton et al., 2011). In the frontal
lobe, peak activations were observed in the middle and inferior frontal
gyrus. These regions are also associated with decision making and
problem-solving, reportedly highly damaged in AD (Johnson et al.,
2005; Sluimer et al., 2009; Whitwell et al., 2008) and are believed to
lead to higher lethargy levels, bizarre/inappropriate behavior and si-
tuations of being stuck in a specific condition (repeating same things
over and over again).

Besides the above discussed frontotemporal networks, AD is char-
acterized by a decline in critical parietal networks such as precuneus
(Apostolova and Thompson, 2008; Bailly et al., 2015; Fennema-
Notestine et al., 2009; Scahill et al., 2002; Walhovd et al., 2010;
Whitwell et al., 2008). Cerebellum, a critical brain region in several
motor, cognitive and behavioral functions, is also more recently being
increasingly suggested as a direct contributor to cognitive and neu-
ropsychiatric deficits in AD (Guo et al., 2016; Jacobs et al., 2017;
Schmahmann, 2016). Deteriorating cerebellum health resulting in
several symptoms such as lack of balance and coordination, tremors,
slurred speech and abnormal eye movements in the elderly. Finally,
damages to the occipital lobe are associated with increased
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misinterpretations of the surrounding environment (e.g. hallucinations,
illusions, misidentification, misperceptions, etc.) and occipital regions
comprising the calcarine, cuneus and lingual gyrus regions have indeed
been reported to be compromised in progression to AD.

The above-discussed findings add further evidence that the localized
abnormal patterns in the brain structure could play a significant role in
the prediction of early AD biomarkers and are of potential clinical ap-
plication. A few of the discriminative regions that we report are rarely
used as prognostic biomarkers to study the conversion of MCI to AD;
our work and the cited literature in this discussion provide compelling
evidence of including these new biomarkers to allow for a complete
characterization of the structural changes in AD progression.

4.2. Limitations and future scope

Here we note some inherent limitations of our work that could be
addressed in the future depending on algorithmic computational
tractability and availability of data resources and data processing al-
gorithms. As with other neuroimaging studies, the foremost limitation
is a limited training data size. In generic image processing applications,
this limitation is often addressed with data augmentation procedures by
using simple rotation, translation, scaling and other data transforma-
tions (also see Castro et al., 2015 and Ulloa et al., 2015 for more ela-
borate data augmentation examples with structural MRI). We expect
even further increases in performance by employing such techniques in
future work, a fact that broadens perspectives for our models that are
already performing at or above state of the art.

Interestingly, a recent study (Casanova et al., 2012) demonstrated
an increase in classification performance with an increase in sample
size using ADNI structural MRI data. Similarly, in our work as well, we
saw a substantial increase in performance with more training data
being fed to the ResNet framework in the modified inter-MCI class
classification task as compared to the standard inter-MCI class classi-
fication task. This makes a strong case to test the use of multiple da-
tasets to extract features in a pooled or separate fashion and then use
the pooled or separate information to train the machine learning fra-
mework. With increasing data availability and standardization in data
preprocessing and pooling procedures, further substantial improvement
in diagnostic and prognostic classification performance could be ex-
pected in future multi-study deep learning research efforts.

Due to the computationally expensive nature of training deep CNNs,
few limitations regarding computational tractability within realistic
study time remain. This tends to restrict extensive fine-tuning of each
involved hyperparameter through random or grid search analysis on
multiple hyperparameters and additionally backing up statistical trends
using methods such as Monte-Carlo. As such, the most critical hy-
perparameters must be prioritized and optimized to estimate general
performance trends of the algorithm within the realistic study period.
For this specific work, we optimized the initial learning rate and L2
weight decay parameter on a sample cross-validation fold using ex-
tensive grid analysis and retained the values for other dataset parti-
tions. Although the same hyperparameters would likely achieve close to
actual performance on different data folds, yet this fine-tuning could
have a small effect on the performance of the respective surrogate
models (e.g. reported performance metrics could be slightly lower than
the original) but also on that of the final predictive model. It must be
noted that this limitation is for performance quantification only; it is
least likely to affect the qualitative analysis (e.g. localizing dis-
criminative brain regions) by a significant margin.

Choosing a stopping criterion for learning a classifier typically in-
volves a tradeoff between generalization error and learning time. While
this study approximated the stopping criterion with information across
all cross-validation folds, further detailed introspection using relatively
unestablished but promising variants of early-stopping criterion could
be explored in future investigations (Prechelt, 1998). Similarly, the
effect of algorithmic variations in bottleneck residual block structures
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(size and depth), training time, and loss optimization procedures could
be understood in future studies to enhance the prediction performance
further.

Several other approaches for enhancing predictive performance of
AD progression could be explored in future work. Diagnosis for the
subjects is currently established through clinical scores, but diagnosis-
specific neuroanatomical or neurofunctional abnormalities might not
show in each subject in each class due to the heterogeneous nature of
age-related dementia. In such a scenario, it could be interesting to
constrain this heterogeneity by training the machine learning model on
the most homogeneous samples (i.e. samples most representative of the
given class) and then evaluate the change in the performance of the
diagnostic/prognostic classification or change in the feature space of
interest. Another approach could be to fuse the low-dimensional clinical
scores used to make the clinical diagnosis with the MRI features space
to further enrich the feature learning process. This approach has re-
portedly resulted in enhanced performance in few studies as also sug-
gested in Table 2. Various widely used low dimensional features chosen
by experts (e.g. volumetric MRI features or similar features from other
modalities) could even further enhance diagnostic and prognostic per-
formance. For example, Lee et al., 2019 used four different data modes:
demographic information, neuroimaging phenotypes measured by MRI,
cognitive performance, and CSF measurements. For neuroimaging
phenotypes measured by MRI, the authors used high-level features such
as hippocampal volume and entorhinal cortical thickness. This ap-
proach and similar approaches focusing on such high-level features
(separately or in combination with other features such as demographic
information and cognitive/behavioral performance measurements) are
also highly reasonable to identify disease biomarkers for classification/
prediction purposes.

Recent literature reflects ample evidence of advantages of multi-
modal studies in understanding brain structure and function and de-
codes brain complexities (Abrol et al., 2017b; Calhoun and Adali, 2009;
Calhoun and Sui, 2016). Indeed, few previous multimodal studies have
reported prediction performance improvements due to training the
same machine learning framework with multiple modalities as com-
pared to a single studied modality for studying AD/MCI (Lorenzi et al.,
2016; Toledo et al., 2013; Zhang et al., 2011) as is also evident from
Table 2. Due to this evidence from other explored machine learning
neuroimaging studies, performance improvement is highly likely if
features for multiple modalities are extracted through the ResNet fra-
mework and further fused using a data fusion algorithm to generate a
collective feature space for predicting chances of progression to AD.

Interestingly, the fusion of features from multiple structural (MRI,
PET and CSF) modalities (structure-structure fusion) has been much
more frequently explored than the fusion of feature space from one or
more of these structural modalities to feature space from a functional
neuroimaging modality (structure-function fusion) such as fMRI. One of
the reasons for the relatively less explored structure-function fusion in
AD/MCI literature could be the significantly smaller number of fMRI
datasets as compared to data from the structural modalities.
Nonetheless, structure-function fusion could be highly engaging, and
several robust fMRI features such as amplitude of low-frequency fluc-
tuation (ALFF) maps, or static/time-varying functional connectivity
(FC) maps exist. Of specific interest in fMRI is the time-varying FC
feature space that have recently been shown to be replicable (Abrol
et al., 2016), statistically significant and robust against variation in data
grouping, decomposition and analysis methods (Abrol et al., 2017a),
and also more discriminative of diseased brain conditions (Rashid et al.,
2016) than static FC. As such, future works featuring such promising
deep learning models could seek performance gains not only from
structure-structure fusion coupled with information in cognitive/func-
tional scores but with structure-function fusion as well.
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5. Conclusion

This work shows that the ResNet architecture showed performance
numerically comparable to state of the art in predicting progression to
AD using MRI data alone, and within 1% of the state of art performance
considering multimodal studies as well. This clearly reflects the high
potential of this deep architecture for studying progression to AD and
neuroimaging data in a broader sense. The prognostic classification
performance was exceptional despite several limitations as outlined in
the discussion section and addressing these limitations in future work
could highly likely result in further improvement in the performance of
this relatively newer machine learning framework. The most dis-
criminative brain regions as highlighted by the ResNet framework
confer with previous findings in AD/MCI literature to a high degree,
and brain regions for which there is insufficient evidence must be in-
vestigated further to enhance the set of potential AD biomarkers. The
ResNet architecture could be explored in future for learning from
multiple modalities for examining any possible improvements in diag-
nostic and prognostic classification and identification of more specific
multi-modal biomarkers for AD or other brain conditions. We conclude
that our results further strengthen the expectations and a high like-
lihood of discovery of modifiable risk factors for understanding bio-
markers of progression to AD early, primarily using advanced neuroi-
maging data processing methods such as the one explored in this work.
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